Chapter 7.3 part 1

Section 7.3 Subgroups
Din A subset $H \subseteq G$ (G is a group) is called a subgroup if H is a group (with the same operation)
$\vec{b} x G \subseteq G$, hey $\subseteq G$ - trivial all other subgroups are called proper
$\overrightarrow{\vec{b}_{x}} \quad \mathbb{R}^{* *} \subset \mathbb{R}^{*} \quad$ (multiplication of reals)
$\mathbb{R} \subset \mathbb{C}$ (addition)
$\{1,-1\} \subset \mathbb{R}^{*} \quad$ (multiplication)

$$
h 1,-1\rangle=\langle-1\rangle
$$

Th 7.11 (analogue of Th 3.6 for subrings) - criterion for a subset to be a subgroup
A subset H of a group G is a subgroup if and ouby if the 2 conditions are satisfied
(1) if $a, b \in H$ then $a b \in H$ (the subset is closed under the operation)
(ii) if $a \in H$ then $a^{-1} \in H$

It family of "minivalistic" examples of subgroups
Let G be a group, and let $a \in G$
If H is a subgroup of G such that $a \in H$, then
by thin. II (1) $a^{n} \in H \quad n$-any positive integer by ThIll (11) $a^{-1} \in H$, and, by Th 7, II (1), $a^{-n} \in H$ Also $a^{0}=e \in H$
Th7.1H Jor a group B and any element $a \in B$ $\langle a\rangle=\left\{a^{n} \mid n \in T_{2}\right\}$ is a subgroup of G
Pf - immediate from Th 7.11
Terminology: $\langle a\rangle \subseteq G$ - cyclic subgroup
If there is $a \in G$ such that $\langle a\rangle=G$ then G is referred to as a cyclic group

Remark $\langle a\rangle \subseteq B$, the subgroup may be finite or infinite.
$\langle 2\rangle \subset \mathbb{Z}$ cyclic subgroup
$\rangle=\nabla$ eyclic group
For $a \in G$, the order of a denoted by $|a|$ is the smallest integer \& suet that $a^{k}=e \in G$

Th 7. $15 \quad|\langle a\rangle|=|a|$ for any $a \in G$ (B is a group)
The order of the cyclic subgroup $\langle a\rangle \subseteq G$ is equal to the order of the element $a \in B$
Remark It may happen that $\langle a\rangle=\langle b\rangle$ motile $a \neq b$
Tx ∇_{7}^{*} - group of order 6

$$
\begin{aligned}
& \langle 2\rangle=42,4,1\} \\
& \langle 4\rangle=\{4,2,1\}
\end{aligned}
$$

$\langle 2\rangle=\langle 4\rangle$. same cyclic subgroup

$$
\begin{array}{ll}
2 \equiv 2(\bmod 7) & d_{1} \equiv 4(\bmod 7) \\
2^{2} \equiv 4(\bmod 7) & 4^{2} \equiv 2(\bmod 7) \\
2^{3} \equiv 1(\bmod 7) & 4^{3} \equiv 1(\bmod 7) \\
2^{4} \equiv 2(\bmod 7) & \\
2^{6} \equiv 4(\bmod 7) &
\end{array}
$$

(of order 3)
$\langle 3\rangle=43,2,6,4,5,1\rangle=R_{7}^{*}$ - is a cyclic group
A generalization of eyelie subgroups as minimal subgroups containing an element
Let S be a subset of a group B
TH7.18 Let $\langle s\rangle$ be the set of all possible products (in every order) of elements of S and their inverses.

Then:
(1) Then: $\langle S\rangle$ is a subgroup of G
(2) If H is a subgroup of G such that $H \supset S$ then $H D<c\rangle$

Terminology: $\langle S\rangle$ is the subgroup generated by the subset S
Remark $S=h a, b y$
$\langle s\rangle$ - the set of all "words"
a word: $a b a^{-7} b^{3} a^{6} b^{-5} \ldots$ of finite length

